

Name: _____

Date: _____

Math 12 Honours: section 5.6 Natural Logarithms and e

1. When should you use the formula $A = P \times e^{rxt}$ versus the final equation: $F = I \times N^{\frac{A}{L}}$

2. When a population is decreasing continuously at a rate of 3.5%, then what should the value of "r" be in the equation $A = P \times e^{rt}$?

3. What is the value of the irrational number "e"? How can it be derived?

4. Simplify each of the following into a single exponent:

a) $\frac{2}{e^{-x}}$	b) $(e^x)^4$	c) $e^{1-x} e^{3x}$
d) $e^x e^{-2x}$	e) $3e^{2x} (1 - 6e^{-3x})$	f) $4e^{3x-2} (2 - 3e^{2x})$

5. Evaluate each of the following without using a calculator

a) $e^{2\ln 4}$	b) $\ln e^3$	c) $-3\ln e$
d) $e^{-4\ln 4}$	e) $\ln \sqrt[4]{e^5}$	f) $\ln \left(\frac{1}{e} \right)$
g) $\ln(1+e)$	h) $e^{\ln 0}$	i) $\ln 3 + 2\ln 4 - \ln 48$

6. Reduct the following to lowest term

a) $e^{-2\ln 3 + 3\ln 2}$	b) $e^{-\ln \left(\frac{1}{e} \right)}$	c) $\ln(3^{-e} e^3)$
d) $\ln \left(\frac{\sqrt{\pi}}{e} \right)$	e) $\ln e^{2\ln e}$	f) $e^{\ln 3^{(\ln 4)}}$

7. Solve for "x"

a) $e^{3x} = 4$	b) $\ln x = 11$	c) $\ln(3x - 2) = 4$
d) $\ln(e^{4-x}) = 6$	e) $e^{5-3x} = 4$	f) $\ln x = \ln 11 + \ln 6 - \ln 3$
g) $\ln(\ln x) = 4$	h) $e^{e^{2x}} = 4$	i) $\frac{\ln \sqrt{x}}{2} = 3$
j) $\ln(4x - 1) = \frac{\log 10}{\log e}$	k) $(e^{\ln 4x})^2 = 4$	l) $\ln x^e = 1$
m) $(\ln x)^2 - \frac{\log x}{\log e} + 6 = 0$	n) $e^x - 6e^{-x} = 1$	o) $(\ln x)^2 + (\ln x) = 2$
p) $2 \ln x = \ln(4x + 5)$	q) $e^x + 4e^{-x} = 5$	r) $e^{\ln x^3 - 1} = 12$

8. Express the following as a single logarithm:

a) $\frac{1}{3} \ln x + 2 \ln(6x + 5)$	b) $3 \ln x - \ln(x^2 - 1) + \ln(x^2 - 1)$
c) $4 \ln x + 5 \ln(2 - x) - 2 \ln(1 + x)$	d) $\frac{2}{3} \ln x - 3 \ln(x^2 - 2x - 8)$

9. The relationship between the elapsed time "t", in hours, since Jack took his first dose of medication, and the amount of medication $M(t)$, in mg, in his bloodstream is modelled by the following function below.

$$M(t) = 30 \times e^{-0.8t}$$

I) How much medication will Jack have in his bloodstream after 3 hours?

II) How many hours will it take for Jack to have 1mg left in his bloodstream?

10. The amount of money Dave has in his investment is given by the formula: $A = Pe^{rt}$. If He invests \$5000 at 2.5% interest, compounded continuously, how long will it take to double his investment?

11. A radio-active substance has a half life of 2500 years. What is the equation for the amount of this substance after "t" years in the form of $A = Pe^{rt}$?

12. TD bank offers an GIC that gives annual interest of 1.5% compounded monthly. What is the equivalent interest rate if the interest is compounded continuously?

13. Each year, Jason's parents contributes \$2500 into his RESP account, then govt will match it with \$500. Suppose the RESP is invested in a fund that gives 8% return annually, compounded continuously, starting when Jason was born, how much will he have in the account when he turns 18?

14. When $p = \sum_{k=1}^6 k \ln k$, the number e^p is an integer. What is the largest power of 2 that is a factor of e^p ? AMC 12B

15. Challenge: What is the value of $\lim_{xy \rightarrow 1} \left(\frac{\ln x}{\ln y} + \frac{\ln y}{\ln x} \right) = ?$

16. Evaluate: $\sum_{n=2}^{\infty} \frac{1}{n(n-1)^3}$, given Euler's beautiful result that: $1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}$

[Math Circles]